Evaluating Major Shifts in America's Energy Portfolio: Experiences with POLYSYS

Burton C. English
Daniel G. De La Torre Ugarte
Kim Jensen

Modeling Aggressive Renewable Energy Goals Workshop 3-5 pm on June 27th

L'Enfant Plaza Hotel Washington D.C.

Outline

- OBrief introduction to POLYSYS
- Biofuels module design
- Assumptions required for POLYSYS analysis
- Sample results from POLYSYS
- Linkage to IMPLAN
- Economic impact results
- Conclusions and research needs

POLYSYS

ERS Livestock Model

Turkeys Broilers

POLYSYS

USDA Baslir	ıe
^	

Corn	2004/05	2005/06	2006/07	2007/08	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16
Planted acres (Mil)	80.90	81.60	80.50	81.00	82.00	84.00	84.50	85.00	85.00	85.00	84.50	84.50
Harvested acres	73.60	74.30	73.20	73.70	74.70	76.70	77.20	77.70	77.70	77.70	77.20	77.20
Yield/harvested acre	160.40	148.40	147.70	149.50	151.30	153.10	154.90	156.70	158.50	160.30	162.10	163.90
Exports	1,814	2,000	2,100	2,025	2,075	2,100	2,125	2,175	2,225	2,275	2,325	2,375
Farm price	2.06	1.80	2.00	2.20	2.45	2.55	2.60	2.60	2.60	2.55	2.60	2.60
Net returns (per ac)	197.05	135.40	124.44	125.37	164.79	182.16	192.15	194.51	197.01	191.54	202.15	204.73

Regional Acreage and Production

National Demands, Prices, Exports and Government Payments

(Elasticities for price and export response)

Simulate Change

Demand, Exports, Land Availability, etc.

2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 2014/15 2015/16

2016/17 2017/18 2018/19 2019/20 2020/21 2021/22 2022/23 2023/24 2024/25 2025/26 2026/27 2027/28

POLYSYS Regional Output

2028/29 2029/30

POLYSYS National Output

Annual Prices, production, government payments, exports,

incorne University of Tennessee

Annual acreage, production, government payments, income

POLYSYS

2004/05	2005/06	2006/07	2007/08	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	2015/16
2016/17	2017/18	2018/19	2019/20	2020/21	2021/22	2022/23	2023/24	2024/25	2025/26	2026/27	2027/28
0000/00 0000/00											
<u>2028/29 2029/30</u>											

POLYSYS Simulation Structure and Flow (Annual)

Additions for Biofuels Model

- OAdd Feedstocks
 - Energy Dedicated Crop switchgrass.
 - Crop Residues corn and wheat.
 - Wood Residues forest thinnings, wood wastes and mill wastes.
 - Yellow grease and tallow
- OPotential conversion of pasture.
- OCorn grain and biomass ethanol compete.

Finding Optimal Feedstock Mix

Projection of Energy Needs

Projection	Energy Demand (quads)
Department of Energy	126.99 in 2025 quads
RAND	117.7 in 2025 since replacement of coal reduces energy demand.
Current Level of Use	Roughly 101 quads in 2005

Renewable Energy Feedstocks From Agriculture

Energy Source:	2005 ^a	2025 ^b
	Quads	Quads
Geothermal	0.30	2.08
Solar Photovoltaic	0.00	0.69
Solar Thermal	0.01	0.00
Hydro	2.80	3.10
Wind	0.11	4.04
Total	3.22	9.91

^a (DOE, 2006) ^b RAND analysis

In addition, In 2005, there are 2.4 quads of biomass related energy currently used.

Projected Renewable Energy Production, 2025

Type of Energy	Units	Quantity	BTU's/unit	Quads
		Billion units		
Ethanol	Gallons	86.9	84,600	7.35
Biodiesel	Gallons	1.1	136,000	0.15
Electricity from Biomass	kWh	962	8,266	7.95
Wind	kWh	606.2	10280	6.23

^a Also included in the analysis are the RAND projected levels for solar, hydro, and geothermal.

Land Use by Major Use Category, 2002.

Total Cropland 434 Million Acres

Source: USDA, National Agricultural Statistical Service, 2004.

Assumptions for a Potential Outlook

•Yield by 2025:

Crops: corn (195 bu/ac), soybeans (51 bu/ac), wheat (53.00 bu/ac), energy crop (6 to12 dt/acre).

Management Practices:

 Increase crop residues by shifting corn and wheat acreage to 50% no-till, 30% reduced till and 20% conventional till by 2025.

Rate of Growth Increase in Yields Assumed Beyond 2015

	USDAext	AE
Corn (bushels)	1.13%	1.69%
Sorghum (bushels)	0.76%	1.13%
Oats (bushels)	0.61%	0.91%
Barley (bushels)	0.88%	1.31%
Wheat (bushels)	0.88%	1.32%
Soybeans (bushels)	0.93%	1.39%
Cotton (pounds)	0.43%	0.64%
Rice (pounds)	0.79%	1.19%

Assumptions for a Potential Outlook

- Commodity Programs:
 - Remain as specified in 2006.
- Conversion Efficiency:
 - Improved cellulosic ethanol to 89
 gallons/ton by 2025 and corn ethanol
 conversion to 3 gallons/bushel (97
 gallons/ton) by 2015. Other means to
 produce ethanol from food wastes
 remained at the current conversion rate.

Expansion Assumption

Feedstock for Energy: Converted to Energy

Land Use: 2007, 2010, 2015, 2020, and 2025

(million acres)

Estimated Change in Prices

Crop	2010	2015	2020	2025
Corn	0.16	0.02	0.16	0.71
Wheat	-0.12	-0.23	0.33	0.48
Soybeans	0.09	0.16	1.69	2.04
		\$/dry t	on	
Dedicated				
Energy Crops	0	46.85	60.9	81.85
		\$/gallo	n	
Cost of Ethanol	1.57	1.38	1.44	1.60

Distribution of the Production of Dedicated Energy Crop, 2015

Distribution of the Production of Dedicated Energy Crop, 2020

Distribution of the Production of Dedicated Energy Crop, 2025

Changes in Farm Income and Government Payments (million \$)

Sensitivity on availability of cellulose-to-ethanol path

Crop prices in 2015

Crop	Available in 2012	Available in 2015	
Corn	1 %	103%	
Wheat	-6 %	31 %	
Soybeans	2.5 %	45 %	
		\$/dry ton	
Dedicated Energy Crops	46.85	115.00	

Sensitivity to other key assumptions

- Crop yields
- Conversion yields
- Conversion path contribution to animal feed
- Conversion of pastureland
- World supply response

Linking POLYSYS to IMPLAN

Biomass to Ethanol Conversion Process

Biomass to Biodiesel Conversion Options

2015 Cellulosic Ethanol Plants

2020 Cellulosic Ethanol Plants

2025 Cellulosic Ethanol Plants

Estimated Annual National Impacts

			Impact in Employment	
	Change in Industry Output			
	Direct Impact	Total Impact	Direct Impact	Total Impact
	million		number of jobs	
2020:				
Agricultural Production Sector	\$56,844.9	\$86,012.0	536,493.1	828,569.8
Renewable Energy Sector	\$93,007.9	\$189,137.0	61,892.1	980,656.6
Interstate Commerce	\$0.0	\$173,503.0	0.0	1,340,315.5
Total	\$149,852.8	\$448,652.0	598,385.3	3,149,541.9
2025:				
Agricultural Production Sector	\$113,664.2	\$170,512.2	1,171,760.4	1,749,625.0
Renewable Energy Sector	\$138,776.0	\$280,854.1	93,390.3	1,460,017.7
Interstate Commerce	\$0.0	\$252,990.5	0.0	1,955,891.1
Total	\$252,440.2	\$704,356.8	1,265,150.7	5,165,533.8

Estimated Annual Midwest Regional Impacts Change in TIO

Agricultural Sector

Renewable Energy Sector

Estimated Annual Midwest Regional Impacts, 2025 Increased Jobs

Renewable Energy Sector

The Challenges

- Cellulose to Ethanol path available by 2012
- Disseminate information for farmers to gear them up to plant 100 millions acres in dedicated energy crops.
- Input availability for energy dedicated crops: seed, chemical labeling, machinery.
- Yield gains
- Logistics for supplying bio-refineries: pretreatment, transportation, storage.
- Building about 500 -1000 new plants
- Distribution of ethanol
- Ethanol sales infrastructure: E85

Conclusions

- The analysis demonstrated that agriculture and this nation's land base can meet the challenges ahead and projected impacts that might occur if the goals were met.
- The modeling system's livestock sector, forest sector, and demands for pasture land need additional attention.
- A renewable energy demand that is sensitive to the price of oil and policy would be a valuable addition to the model and enhance analysis.
- Plant location and industry expansion needs to be endogenized.
- Incorporate regional dedicated energy feed stocks.
- Address environmental and social concerns

Conclusions (Continued)

- Investments have to be ahead of the curve:
 - Agronomic research
 - OPre-treatment and conversion
 - OInfrastructure of distribution and sales
- Government policy needs to be consistent with objectives and speed of adoption

Project analysis team includes Chad Hellwinckel, Jamey Menard, Roland Roberts, Marie Walsh, and Brad Wilson in addition to Burton English, Daniel G. de la Torre Ugarte, and Kim Jensen

Bio-based Energy Analysis Group http://beag.ag.utk.edu/

Agricultural Policy Analysis Center http://agpolicy.org/

Department of Agricultural Economics, Institute of Agriculture University of Tennessee http://www.agriculture.utk.edu/